BL AUTOMATIC TRANSMISSION

CONTENTS

- 1. SPECIFICATION
- 2. SYSTEM CONSTRUCTION
- 3. SYSTEM LAYOUT
- 4. POWER FLOW
- 5. COMPONENTS
- 6. SHIFT LOCK DEVICE INSTALLATION
- 7. ELECTRICAL CONTROL PARTS
- 8. HYDARULIC CONTROL SYSTEM
- 9. ELECTRONIC CONTROL
- 10. DIAGNOSIS
- 11. WIRING DIAGRAM
- 12. SHIFT PATTERN

SPECIFICATION

General Specifications

ENGINE		A-2.5 TCI	3.5 V6
A/T Model		30-40LEi (AISIN AW)	
General		4 speed transmission (Full line pressure control)	
Maximum input torque (kg.m)		35	
Weight (kg)		79.8	
Torque converter	Туре	3 Elements 1 Stage 2 Phases	
	Dia. (mm)	254	
Components		3 Clutches, 4 Brakes, 3 OWCs	
Planetary gear		3 Planetary gear sets (Simple type)	
Gear ratio	1,2,3,4/R	2.804, 1.531, 1.0	00, 0.705 / 2.393
Shift mode		P-R-N-D-2-L / SNOW(2WD only)	
ATF oil		CASTLE AUTO FLUID D - I I	
ATF capacity (liter)		9.2	
Adapted vehicle		TERRACAN(HMC), CROWN(TOYOTA), VOLVO 960	

SYSTEM CONSTRUCTION

Block Diagram

SYSTEM LAYOUT

1. Output speed sensor	To detect output shaft revolution	
2. Neutral switch	To detect "N" range(A/T) or "Neutral" range(M/T)	
3. Elbow (cooler out)	Way-out from a cooler hose to the A/T	
4. Elbow (cooler in)	Way-in to the cooler hose from the torque converter	
5. Air Breather hose	For air ventilation inside transmission	
6. Oil temp. sensor	To detect the oil temperature	
7. Input speed sensor	To detect input shaft revolution	
8. Outer lever	Connected to the control cable to change driving range	
9. T/M wire	Solenoid valves and sensors connection	

Components and function

	COMPONENTS	FUNCTION	
C0	O/D direct clutch	Connect O/D sun gear and O/D carrier	
C1	Forward clutch	Connect O/D input shaft and input shaft	
C2	Direct clutch	Connect input shaft and Fr/Rr planetary sun gear	
B0	O/D brake	Hold O/D sun gear	
B1	2nd coast brake	Hold Fr/Rr planetary sun gear	
B2	2nd brake	Hold counterclockwise rotation of Fr/Rr planetary sun gear (Hold outer race of F1)	
B3	1st & reverse brake	Hold Fr planetary carrier	
F0	O/D OWC	Connect O/D sun gear and O/D carrier, when O/D sun gear rotates faster than O/D carrier	
F1	NO.1 OWC	Hold counterclockwise rotation of Fr/Rr planetary sun gear, when B2 operates.	
F2	NO.2 OWC	Hold counterclockwise rotation of Fr planetary carrier	

Components and operation

Components and operation

Components and operation

S1

ON

ON

ON

ON

ON

ON

OFF

OFF

ON

ON

OFF

ON

ON

OFF

ON

OFF

OFF

ON

ON

ON

ON

OFF

OFF

OFF

OFF

OFF

ON

OFF

ON

ON

OFF

ON

ON

OFF

ON

POSITION

Ρ

R(V < 7)

R(V > = 7)

Ν

D

2

L

1st

2nd

3rd

4th

1st

2nd

3rd

1st

2nd

9

2.804

1.531

ON

OFF

Principle of each range

1. Power flow

OD input shaft \rightarrow OD gear set(coupling by C0) \rightarrow Fr/Rr (speed reduction by F2(1st gear), by B2&F1(2nd gear)) 2. Engine brake

- D range 1st,2nd gear: non(F2,F1 free to clockwise)
- 2 range: 1st gear(non), 2nd gear(operated by B1)
- L range 1st,2nd gear: operated by B1, B3

1. Power flow

OD input shaft \rightarrow OD gear set (speed increase by B0)

- \rightarrow Fr/Rr (coupling by C1&C2)
- 2. Engine brake
- D range: operates

1. Power flow

OD input shaft \rightarrow OD gear set(coupling by C0) \rightarrow Fr/Rr (coupling by C1 & C2)

2. Engine brake

- D & 2 range: operates

1. Power flow

OD input shaft \rightarrow OD gear set (coupling by C0)

- → Fr/Rr (reverse rotation by B3)
- 2. Reverse inhibition control: C2

D range – 1st gear

R range

1

1. Adjusting Bolt 2. Selector Position Switch 3. Solenoid Wiring 4. Elbow 5. Oil temperature Sensor(OTS) Wire 6. Breather hose 7. Output Speed Sensor 8. Adapter 9. Key 10. Sensor Rotor Spacer 12. Ball 13. Speedometer Drive Gear 14. Gasket 15. Oil temperature Sensor Bracket 16. Oil Seal 17. Manual Valve Lever Spacer 19. Pin 20. Parking Lock Rod

21. Parking Lock Pawl Shaft 22. Parking Lock Pawl 23. Parking Lock Pawl Bracket 24. Input Speed Sensor 25. Spring 26. C0 Accumulator Piston 27. Spring 28. B2 Accumulator Piston 29. C2 Accumulator Piston 30. Spring 31. Spring 32. Check Ball Body 33. Valve Body 34. Oil Strainer 35. Magnet 36. Oil Pan 37. Drain plug

1. Oil Pump

- 2. O-Ring
- Race
- Bearing
- 5. O/D Planetary Gear, Direct Clutch and One-Way Clutch
- 6. Race
- Snap Ring
- 8. O/D Brake Pack
- 9. Bearing
- 10. Race
- 11. O/D Planetary Ring Gear
- 12. Race
- 13. Bearing
- 14. O/D Support
- 15. Race
- 16. Thrust Washer
- 17. Direct Clutch
- 18. Bearing
- 19. Thrust Washer
- 20. Forward Clutch
- 21. E-Ring
- 22. Second Coast Brake Band
- 23. Pin
- 24. Race
- 25. Front Planetary Ring Gear
- 26. Bearing
- 27. Race
- 28. Snap Ring
- 29. Front Planetary Ring Gear
- 30. Race

- 32. Planetary Sun Gear
 33. Thrust Washer
 34. Piston Sleeve
 35. Snap Ring
 36. Second Brake Pack
 37. NO.1 One-Way Clutch
 38. Thrust Washer
 39. Snap Ring
- 40. Second Brake Drum
- 41. First and Reverse Brake Pack
- 42. Rear Planetary Gear and NO.2 One-Way Clutch
- 43. Bearing and Race
- 44. Rear Planetary Ring Gear
- 45. Assembled Bearing and Race
- 46. Output Shaft
- 47. Spring

31. Bearing

- 48. Second Brake Drum Gasket
- 49. Second Coast Brake Piston
- 50. Second Coast Brake Cover
- 51. Snap Ring
- 52. Transmission Case

- 2. Oil pump body
- 3. O-ring
- 4. Driven gear

- 6. Stator shaft
- 7. Oil seal ring

- Snap ring
- 6. Disc
- Plate

- 12. O/D one-way clutch
- 13. One-way clutch outer race
- 14. Thrust washer

- 18. O/D planetary ring gear
- 19. Ring gear flange
- 20. Snap ring

- 2. Bearing
- 3. Forward clutch drum
- 4. O-ring

- 6. O-ring
- 7. Return spring
- 8. Snap ring
- 9. Race

- 11. Plate
- 12. Disc
- 13. Flange
- 14. Snap ring

OD OWC (F0) and Forward clutch

Forward clutch

- 4. Return spring
- 5. Snap ring

- 9. Flange
- 10. Snap ring

Direct clutch

Plastic washer on Direct clutch and OD brake piston

- 1. Race
- 2. Front planetary ring gear
- 3. Race
- 4. Race

- 5. Front planetary gear 6. Race
- 7. Bearing

- 1. Snap ring
- 2. Planetary sun gear
- 3. Oil seal ring
- 4. Sun gear input drum

- 5. Snap ring
- 6. Thrust washer
- 7. One-way clutch & second brake hub

Front planetary gear

Connected to output shaft

Front planetary gear

Direct clutch & Forward clutch & OWC1 Drum for 2nd Hub for 2nd coast brake brake **OWC1 (F1)** Sun gear for rear planetary gear **Direct** clutch **Forward** clutch

Snap Ring

5. NO.2 One-Way Clutch

9. Race

10. Bearing

- 14. Oil Seal Ring
- 15. Output Shaft

- 1. Thrust washer
- 2. Snap ring
- 3. Spring retainer
- 4. Piston return spring
- 5. Piston sleeve

- 6. Second piston
- 7. O-ring
- 8. Second brake drum
- 9. Rear planetary gear and output shaft

Rear planetary gear & 2nd brake piston

- 1. Snap ring
- 2. Piston return spring
- 3. O-ring
- 4. OD brake piston
- 5. Race

- 6. Bearing
- 7. OD support
- 8. Thrust washer
- 9. Seal ring

OD brake

- 1. Plate
- 2. Disc
- 3. Flange
- 4. O-ring
- 5. NO.2 First & reverse brake piston

- 6. O-ring
- 7. Reaction sleeve 8. O-ring
- 9. NO.1 First & reverse brake piston
- 10. Case

Valve body

Valve body

Accumulators

Ball and clip

Clip

2nd coast brake oil hole

- 1. Procedure to install the lock cam.
- Make sure to move shift lever to position "P" and install lock cam as figure.
- 2. Procedure for adjusting shift lock cable.
 - Check that lock cam is located in position.
 - Install shift lock cable in position as figure.
 - Temporarily install shift lock cable to A/T lever assembly as shown in figure. Securely insert cable end into fixing pin of cam.
 - After checking that a portion of cable end touches cable fixing pin of P-lock cam, fix shift lock cable to A/T lever.

- 3. Checking that procedure for installing the shift lock is correct.
 - When the brake pedal is not depressed, push button of the shift lever at "P" position cannot be operated. (Shift lever cannot be shifted at the other positions from "P").

Push button can be operated at the other positions except "P".

- When brake pedal stroke is 30 mm (with shift lever at "P" position), push button should be operated without catching and shift lever can be shifted smoothly to other from "P".
- When brake pedal is not depressed, shift lever should be shifted smoothly to "P" position from other positions.
- Brake pedal must be operated smoothly without catching at all positions.
- If shift lever is shifted to "P" position, ignition key must be turned to "LOCK" position smoothly.

Each electrical parts

NEUTRAL START SWITCH (NSW)

NSW transmission the information which range includes shift lever of A/T to TCM by combination of a position circuit terminal.

1) It is possible for NSW to start an engine in only "P" and "N".

(Prevention of reckless driving)

2) It is used for NSW to shift control.

- <u>No input signal: 'D' range control</u>
- Multi input signals: Priority of D-2-L-R-N-P

Each electrical parts (Inhibitor switch)

4

Each electrical parts

② OUTPUT SPEED SENSOR (SP)

Output Speed Sensor detects a turn number of magnet of rotor sensor installed in output shaft, and communicates to TCM as a signal.

③ INPUT SPEED SENSOR (C0)

Input Speed Sensor detects A/T input speed from rotation number of C0 drum, and they transmit to TCM as a signal.

Each electrical parts (Input speed sensor, C0)

- To detect input shaft speed
- Data for shift control

(Judge the beginning or the end of 4th gear shifting)

- Detect if 4th gear is engaged or not
- 0 RPM at 4^{th} gear \rightarrow C0 (no operation)
 - → <u>C0 rev.>500 rpm:</u> recognition to be shifted to 3rd gear
 - → <u>C0 rev.<500 rpm:</u> recognition to be shifted to 4th gear

Connector

560-680 ohm (20 degrees Celsius)

Each electrical parts (Output speed sensor)

- To detect output shaft speed
- Data for shift control

Output speed sensor

Resistance: 387 –473 ohm (20 degrees Celsius)

Each electrical parts

④ OIL TEMPERATURE SENSOR (OT)

The Oil Temperature Sensor concerts ATF temperature variation into electronic signals to transmit to TCM. This information is necessary for shift control and L-up control, etc.

(5) SHIFT SOLENOID NO.1 NO.2 (S1, S2)

Shift Solenoid No.1/2 is each, and it is installed VALVE BODY of A/T directly. And Shift Solenoid No.1/2 does the operation of ON / OFF by the control signal from TCM, and changes a position of shift valve by a combination with Shift Solenoid No.1/2, and changes gear.

NORMAL CLOSE TYPE

OT-G

от

Each electrical parts (Oil temperature sensor)

- To detect oil temperature
- Data for high or low oil temperature shift control
- 200 degrees Celsius when short or open \rightarrow No lock-up control

Each electrical parts (Shift solenoid No 1 No.2)

11-15 ohm (20 degrees Celsius) * S1,S2(NC type) & DCCSV(NO type)

No battery connectedNo air leakageBattery connectedAir leakage

Each electrical parts

DICK UP SOLENOID (SL)

SL operates of ON/OFF by the control signal from TCM and L-up clutch inside T/C.

NORMAL OPEN

Each electrical parts (Line pressure control solenoid valve)

SHIFT RANGE	LINE PRESSURE (kg/cm ²)		
	IDLE	STALL	
D	3.7 ~ 4.3	8.1 ~ 9.0	
R	6.2 ~ 7.2	15.6 ~ 19.0	

Resistance: 3.3 - 3.7 ohm (20 degrees Celsius)

Each electrical parts (Line pressure control solenoid valve)

- Linear control of applied oil pressure

According to the amount of applying current from the TCM to the line pressure control solenoid coil, accumulator control pressure is managed resulting in smooth engagement of clutches and brakes.

According to the TPS opening angle, it controls the applying oil pressure to the primary regulator valve and generates proper line pressure which matches engine load.

Each electrical parts (Lock-up solenoid valve or DCCSV)

According to each L-up shift schedule, TCM sends signals to the Lock-up solenoid valve which operates **ON/OFF control** "L-up control" on the basis of the vehicle speed and the throttle opening.

Solenoid Type: NO(Normal Open)

* HP/H1(HMC), BL \rightarrow NO Type

Enterprise \rightarrow Duty Type

03-Model \rightarrow NC Type

Hydraulic flow

Solenoid modulator value \rightarrow Lock-up solenoid \rightarrow Solenoid relay value \rightarrow Lock-up relay value \rightarrow Lockup control valve

Temperature / degree C

11-15 ohm (20 degrees Celsius)

KIA MOTORS

Each electrical parts

WIRE TO SOLENOID

Wire To Solenoid puts wiring of Shift Solenoid No.1, No.2, L-up Solenoid and SLT together in one connector, and it is installed to A/T case.

ELECTRONIC CONTROL

TPS (Throttle Position Sensor) signal

- ECM→TCM as CAN data

ELECTRONIC CONTROL

Water Temperature signal

- ECM→TCM as CAN data

Constructions

- •Oil pump
- •Valve body assembly
- •Sol. Valve
- Accumulator
- •Oil path

Based on the hydraulic pressure created by the oil pump, TCM sends signals to solenoid and hydraulic control syste m governs the hydraulic pressure acting on the torque converter, planetary gear, clutches and brakes in accordance with the vehicle driving conditions.

Oil pump

Operated by the impeller hub inside Torque converter, it generates oil pressure for operating components as well as lubricating planetary gear set.

Valve body

Consists of an upper body and a lower body. It controls hydraulic pressure that applies to operating components as well as changes oil paths inside valve body.

Manual valve

Connected to a shift lever, it changes oil path according to the shift lever position, P-R-N-D-2-L.

Primary regulator valve

Using the throttle pressure, Primary regulator valve processes the pressure from the oil pump and generates proper line pressure in accordance with engine load. If the primary regulator valve is abnormal, shift shock or disc slip occurs.

* Line pressure: Basic operating pressure to engage all the clutches and brakes.

C1 orifice control valve

Line pressure from manual valve applies to C_1 . At the same time lock-up control pressure also applies to the other side of the spool valve inside it. Therefore the output pressure to forward clutch via this valve changes.

Secondary regulator valve

It keeps converter pressure, lubrication and cooler pressure steady. If the converter pressure increases, it drains, if the converter pressure decreases, then it stops

the drain. Therefore the converter pressure can be controlled stably.

SCSV-A, B

SCSC-A & B controls 1-2, 2-3, 3-4 shift valve

When the solenoid valve is turned off

- * Sol. Type: NC (Normal close) When ON, it is open \rightarrow line pressure to shift valve drains
- * Resistance: 11~15 ohm (20 degrees Cels.)

68

by ON or OFF signal from TCM. Line pressure applies to the SCSV-A at all the forward driving ranges(D,2,L) and to the SCSV-B at all ranges(P,R,N,D,2,L).

SCSV-A	ON	ON	OFF	OFF
SCSV-B Shift range	OFF	ON	ON	OFF
Р	Parking	_	_	_
R	Reverse	_	_	_
Ν	Neutral	_	-	_
D	1st	2nd	3rd	4th
2	1st	2nd	3rd	3rd
L	1st	2nd	2nd	1st

1-2 Shift valve

1-2 shift valve performs <u>1st - 2nd gear shift</u> by <u>SCSV-B ON/OFF.</u>

* SCSV-B ON:

Pressure at 'A' releases \rightarrow Spool moves upward \rightarrow <u>Pressure to B₂ is applied \rightarrow </u> <u>2nd gear</u>

* SCSV-B OFF:

Hydraulic pressure applied to 'A' \rightarrow Spool moves downward $\rightarrow \underline{B_2 \text{ pressure is cut }}$ <u>1st gear</u>

* At 4th gear, even the SCSV-B is OFF, the spool moves upward because of the 2-3 shift value line pressure: Pressure is applied to B₂

2-3 Shift valve

2-3 shift valve performs <u>2nd - 3rd gear shift</u> by <u>SCSV-A ON/OFF.</u>

* SCSV-A ON:

Pressure at 'A' releases \rightarrow Spool moves upward $\rightarrow \underline{C_2 \ pressure \ is \ cut \ 2^{nd} \ gear}$

* SCSV-A OFF:

Hydraulic pressure applied to 'A' \rightarrow Spool moves downward \rightarrow <u>Pressure to C₂ is</u> <u>applied \rightarrow 3rd gear</u>

* At 'L' range, the spool moves upward because the line pressure from a manual valve applies to 'B': <u>3rd gear is impossible</u>

3-4 Shift valve

3-4 shift valve performs 3rd - 4th gear shift by <u>SCSV-B ON/OFF.</u>

* SCSV-B ON:

Pressure at 'A' releases \rightarrow Spool moves upward $\rightarrow \underline{B_0 \ pressure \ is \ cut \ \rightarrow \ 3^{rd} \ gear}$

* SCSV-B OFF:

Hydraulic pressure applied to 'A' \rightarrow Spool moves downward \rightarrow <u>Pressure to B₀ is</u> <u>applied \rightarrow 4th gear</u>

* At '2', 'L' range, the spool moves upward because the line pressure from a 2-3 shift valve applies to 'B': <u>4th gear is impossible</u>

Accumulators

Hydraulic circuit of accumulator, of which one side is installed in the TM case and the other side faces the valve body, is connected with hydraulic circuit to Clutches, Brakes in parallel. It functions as a damper to lessen the engaging shock of Clutches and Brakes.

<u>That is, accumulator functions as a damper</u> <u>until the accumulator back pressure and</u> <u>spring force that applies on the back side of</u> <u>the piston reaches the line pressure of the</u> <u>other side.</u> If the line pressure exceeds the accumulator back pressure and spring force, accumulator just functions as oil path.

<u>30-Model has 5 accumulators (C0, C1, C2, B0, B2), one of them is installed inside a</u> valve body and the others are located in the TM case.

HYDRAULIC CONTROL SYSTEM

Accumulators

Block Diagram

Shift control

- Shift decision factors
- TPS(CAN data), Output + Input speed(serial data)

■ Driving control (\leftarrow): Up/Down Shift, \leftarrow : Only Down Shift)

- Normal & Hot Mode $D: 1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 4$ $2: 1 \leftrightarrow 2 \leftarrow 3$ $L: 1 \leftarrow 2$
- L4 Mode $D: 1 \leftrightarrow 2 \leftrightarrow 3$ $2: 1 \leftrightarrow 2 \leftarrow 3$ $L: 1 \leftarrow 2$
- Snow Mode $D: 2 \leftrightarrow 3 \leftrightarrow 4$ $2: 1 \leftrightarrow 2 \leftarrow 3$ $L: 1 \leftarrow 2$

Gear	SCSV No.1	SCSV No.2
1st	ON	OFF
2nd	ON	ON
3rd	OFF	ON
4th	OFF	OFF

Damper clutch control

Purpose

- Low fuel consumption, NVH, (Emission) improvement

Operating condition

- Brake switch: Off
- Throttle opening: 12% ↑(2.5 DSL), 6.5% ↑(3.5 GSL)
- Coolant temperature: -100 °C ↑

Control inhibition

- Brake Switch: ON
- Throttle opening: 9% \downarrow (2.5 DSL), 5% \downarrow (3.5 GSL)
- 4WD LOW mode

Engine torque reduction(ETR) and line pressure control (LPC)

Engine torque reduction control improves shift quality due to sending torque reduction request signal from TCM to ECM and reducing engine torque while shifting "N" to "D", "N" to "R" as well as shifting $1 \leftarrow 2 \leftarrow 3 \leftarrow 4$.

<u>* TCM have no information of real (current) engine torque, but through the calibration work</u> at each condition in the actual vehicle for up- and down-shifts, the TCM determines the value by how much the engine torque has to be reduced.

Line pressure control improves shift quality due to controllable line pressure while shifting "N" to "D", "N" to "R" as well as shifting $1 \leftarrow 2 \leftarrow 3 \leftarrow 4$.

<u>* Controlled line pressure is a mapping data which changes according to the current gear</u> position, TPS value, oil temperature.

Engine torque reduction(ETR) and line pressure control (LPC)

Reverse inhibition control

Purpose

- To prevent engaging "Reverse" gear while $D \rightarrow R$ shift (Neutral by C2)

- Output speed < R/S

* High Speed(H/S): 2.5 DSL: 350 rpm(11km/h), 3.5GSL: 400 rpm(11km/h)

* Reset Speed(R/S): 2.5 DSL: 300 rpm(9km/h), 3.5GSL: 325 rpm(9km/h)

Engine over-run inhibition control

Purpose

- To prevent engine over-run by turning the O/D OFF switch accidentally "ON" at high vehicle speed

* wot_43SH

- 2.5 DSL: 4200 rpm(136 km/h), 3.5GSL: 5000 rpm(145 km/h)

Adaptive shift control

Purpose

- Optimal shift control according to the road and driving condition

Functions

- Up slope mode : Prevent a frequent gear shifting → improved performance and fuel consumption
- Down slope mode: Use engine brake \rightarrow improved driving stability

Adaptive shift control (Up slope mode)

Accelerator pedal is off while sloping upward, gear shifts up resulting in poor acceleration. Up slope mode prevents up-shifting at the moment to maintain the driving force during acceleration or escaping corner.

According to the slope angle, there are two modes, Up slope1 and Up slope 2.

Adaptive shift control (Down slope mode)

While driving down hill, engine brake operates automatically according to accelerator position and braking condition at a certain slope degree.

Coast down control

To prevent the frequent gear shift during short time in the condition of low TPS opening ratio and to improve the shift quality such as 2->1, 3->2 at the coast down road, a special shift pattern was adopted to be operated in case of specified vehicle condition.

Coast down control

- Coast down control start condition
- Brake switch is N (When the foot brake is depressed)
- Engine is idle (When the accelerator pedal is not depressed)
- D or 2 range
- Coast down control cancellation condition
- After 1 second since the brake switch is OFF (To prevent hysteresis)
- TPS > 0% (When the accelerator pedal is depressed)

High ATF temperature control

When ATF temperature abnormally rises (more than 135 degrees Celsius), TCM changes shift pattern automatically to avoid ATF temperature increase.

This kind of Hot mode situation can happen when the vehicle is moving up on a steep slope. TCM changes the shift pattern as a high ATF shift pattern extending a low gear range but it does not operating damper clutch.

Engaging damper clutch engagement can rapidly drop down ATF temperature but it reveals inferior drivability.

<u>* In case of Terracan(HMC) which uses same AT model, damper clutch can operate from</u> <u>2nd gear.</u>

- ATF Temp.>= 135 degrees Celsius -> High ATF Temp. shift pattern
- ATF Temp. <= 120 degrees Celsius → Normal shift pattern

Stall test

Purpose

- To check the slip of components and overall performance of the transmission

Caution

- Never longer than 5 seconds at a time
- Take at least one minute idle time in neutral before one more test

Stall RPM

- 2.5 TCI: 2420 +- 150 RPM
- 3.5 GSL: 2520 RPM

Test result

- Over the normal RPM: Slip of components, less line pressure
- Below the normal RPM: ATF oversupply, lack of engine power

Stall test

Test result

	Condition	Possible cause
		Line pressure too low
	In "D" and "R" range	OD clutch slipping
		OD one-way clutch not operating properly
		Forward clutch slipping
		Rear one-way clutch not operating properly
Abovo	In "D" range only	Line pressure too low
Above standard		OD clutch slipping
Standard		OD one-way clutch not operating properly
		Direct clutch slipping
		Low & reverse clutch slipping
	In "R" range only	Line pressure too low
		OD clutch slipping
		OD one-way clutch not operating properly
D	elow standard	Engine out of tune
	CIUW SLAI IUAI U	Slipping of one way clutch within torque converter

Line pressure test			Shift	Line Pressu	ure (kg/cm ²)
				ldle	Stall
			D	4.0 - 4.6	11.7 - 13.2
Test res	ult		R	6.2 - 7.2	15.6 - 19.0
	Condition		Pc	ssible cause	
		Defec	ctive or stuck	the throttle valve	
	In "D" and "R" ranges	Defec	ctive or stuck	the regulator valv	/e
		Defective the oil pump			
		OD clutch slipping			
		Fluid leakage in the "D" range line pressure			
Below	In "D" range only	hydarulic circuit			
standard	In D range only	Forward clutch slipping			
		OD clutch slipping			
		Fluid	leakage in the	e "R" range line p	ressure
	In "R" range only	hydarulic circuit			
		Direct clutch slipping			
			ctive low & re	verse brake	
Freesei	<i>v</i> e line pressure at idle	Defec	ctive or stuck	the throttle valve	
		Defec	ctive or stuck	the regulator valv	/e

Warning lamp & Data Link Connector(DLC)

- Trouble codes and service data display on a HI-SCAN (PRO)
- Failure warning: O/D OFF lamp, MIL (OBD area)
- 2 DLCs are supplied

DLC (20 PIN) : Engine compartment DLC (16PIN) : Inside Cabin

20 Pin DLC connector

PIN	NAME	FUNCTION
Α	Fuel pump	Fuel pump is operated under IG ON
В	IG1	Key switch IG1 power
С	Discretionary	-
D	Condenser fan	Condenser fan is operated in case of ground
E	RKE coding	Data send and receiving
F	Air bag	Data send and receiving
G	Flash power	Data re-write
Н	ABS	Data send and receiving
	Discretionary	-
J	Spark plug adjustment	-
K	K-line	Data send and receiving
L	Discretionary	-
Μ	EAT fail	Display of TCM fail code
Ν	EAT test	TCM check in case of ground
0	IG-	For RPM check
Р	Engine fail	Display of Engine fail code
Q	engine test	ECM check in case of ground
R	GND	-
S	GND	-
Т	B+	Battery power

Definition of D/C & W/C

Driving Cycle (D/C): Driving condition for Diagnosis, Memory, Erase

Definition

<u>When the OBD_FRF_ACK bit2 among ECM CAN Messages turns $0 \rightarrow 1$,</u> <u>1D/C</u>

; ECM keeps '1' (1D/C) un till IG off after engine starts. And next IG off, ECM Rest (0)

MUL_	CODE			MUL_	INFO		
1	0			OBD_FF	RF_ACK		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

Message information

 $MUL_CODE:10 \rightarrow OBD_FRF_ACK$

Bit 2: 0 \rightarrow D/C unsatisfied, Reset

: 1 \rightarrow D/C satisfied

Definition of D/C & W/C

■ Warm-up Cycle (W/C): Driving condition for OBD

Definition

<u>When the OBD_FRF_ACK bit0 among ECM CAN Messages turns 0→1,</u> <u>1W/C</u>

- ; ECM keeps '1' (1D/C) if all the conditions below are satisfied until IG off after engine starts.
 - <u>Coolant temperature >= 71 degrees Celsius</u>, and it should be

<u>**4** degree Celsius higher</u> than the previous temperature.

MUL_	CODE			MUL_	INFO		
1	0			OBD_FF	RF_ACK		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

Message information

 $\mathsf{MUL_CODE:10} \rightarrow \mathsf{OBD_FRF_ACK}$

Bit 0: 0 \rightarrow W/C unsatisfied, Reset

: 1 \rightarrow W/C satisfied

2 Consecutive Driving cycles

■ 2 Driving cycle detection: DTC is duplicated in case same failure is detected at least 2 consecutive driving cycles.

Warning lamp ON/OFF condition

Warning lamp 'Flashing' condition

- DTC is memorized, O/D OFF lamp illuminates
- Type A: 1D/C (DTC stored on the 1st driving cycle)
- Type B: 2D/C (DTC stored on the 2nd driving cycle)
- Type C: only failsafe (No DTC stored, W/L not flashing)

Warning lamp 'OFF' condition

- After no failure detected, the D/C condition below should be satisfied.

 \rightarrow US/EUR: 3 consecutive D/C, DOM/GEN: 1D/C

- When DTC is erased by a Hi-Scan (Pro) or by means of DGC

DTC memory and erase

Memory condition

- Type A: 1D/C (DTC stored on the 1st driving cycle)
- Type B: 2D/C (DTC stored on the 2nd driving cycle)
- Type C: only failsafe (No memory)

Erase condition

- After no failure detected, the consecutive W/C condition below should be satisfied.

 \rightarrow US/EUR: 40 W/C, DOM/GEN: 40 W/C

- When DTC is erased by a Hi-Scan (Pro) or by means of DGC

How to check the Fail-code by means of DGI/DGC

1) Let the PIN No. 11 of DLC ground.

- 2) O/D OFF lamp will be flashing several seconds after O/D OFF lamp turns on.
- 3) For the clear of Fail-code, let the PIN No. 3 of DLC ground over than 5 sec.

[Data Link Connector]

How to count the O/D OFF lamp flashing

For example : P1783 / P0604

MIL Request

■ MIL: On-board warning lamp for OBD-II, EOBD Emission regulation

MIL ON condition

- When DTC is memorized in TCM,

; TCU CAN Message, TCU_OBD Bit 2 sets $0 \rightarrow 1$

Bit 3	Bit 2	Bit 1	Bit 0
MIL blinking	MIL on	freeze frame	readiness

MIL OFF condition

- After no failure detected, the D/C condition below should be satisfied.

→US/EUR: 3 consecutive D/C

- When DTC is erased by a Hi-Scan (Pro) or by means of DGC

DTC detected condition and failsafe

CODE	DESCRIPTION	FAILSAFE
P0707	Output speed >= 1130, Engine rpm>= 1500	Judge 'D' range (system mechanically operates)
P0708	2 or more signals are dectected for more than 10 sec.	D>2>L>R>N>P (operation priority)
P0722	(1 st -3 rd gear) No output while 45 input pulses detected	Gear shift by using input speed sensor signals
1 0722	(4 th gear) 1500 output rpm drop and 0 rpm detected	No lock-up/4 th gear/ETR/LPC/Rverse/Squat control
P0743	(Short to GND) 'OFF' detected for 300 msec after 'ON'	DCCSV OFF
10743	(Open/short to B+) 'ON' detected for 50 msec after 'OFF'	1 st gear hold if output rpm < 375 (Open/B+ short)
P0748	(Open/short to GND) AD value =< 15 for 70 msec	4 th gear hold
10740	(Short to B+) AD value >= 1000 for 500 msec	
P0753	(Short to GND) 'OFF' detected for 300 msec after 'ON'	Lock-up inhibited
1 07 55	(Open/short to B+) 'ON' detected for 50 msec after 'OFF'	Gear hold: D range-4 th ,2 range-3 rd ,L range-1 st
P0758	(Short to GND) 'OFF' detected for 300 msec after 'ON'	Lock-up inhibited
10750	(Open/short to B+) 'ON' detected for 50 msec after 'OFF'	Gear hold: D range-4 th ,2 range-3 rd ,L range-1 st
P1121	TPS message FF H is received for 0.2 sec	Judge TPS 0%, Max. line pressure, No ETR/LPC
P0710	(Short) Abnormal sensor resistance detected for 5 min.	Judge ATF temp. 200℃, No lock-up, ETR/LPC
1 07 10	(Open) AD value is under 15 or over 1000 detected	inhibited while shifting
P1115	WT message FF H is received for 0.2 sec	Judge the Temperature normal
P0717	No input while 12 pulses of output signal are detected	No lock-up, ETR/LPC inhibited while shifting
P0716	Input speed >= 7000 rpm detected	-
P1630	BUS OFF is detected 0.2 sec after IG on	No lock-up, maximum line pressure, No ETR/LPC
P1631	No message received from ECM	No lock-up, maximum line pressure, No ETR/LPC
-	Output rpm >= 2260, TPS>=5%, Brake on >= 10sec	Ignore the brake signal, Lock-up available

DTC	DECODIDION	3.5 V6(EUR/US)	3.5 V6(DOM	3.5 V6(DOWGEN), A-2.5	
DTC	DTC DESCRIPTION		MIL	Fault type	W/L	
P0707	Transmission Range Sensor Circuit Low Input	В	0	В	-	
P0708	Transmission Range Sensor Circuit High Input	В	0	В	-	
P0722	Output Speed Sensor Circuit No Signal	В	0	В	0	
P0726	Engine Speed Input Sensor Range/Performance	В	0	В	-	
P0727	Engine Speed signal invalid	В	0	В	-	
P0740	Torque Converter Clutch Circuit (SL) Malfunction	В	0	В	-	
P0743	Torque Converter Clutch Circuit (SL) Electrical	В	0	В	-	
P0750	Shift Solenoid A(S1) Malfunction	В	0	В	-	
P0753	Shift Solenoid A (S1) Electrical	А	0	A	-	
P0755	Shift Solenoid B (S2) Malfunction	В	0	В	-	
P0758	Shift Solenoid B (S2) Electrical	А	0	A	-	
P0748	Pressure Solenoid (SLT) Electrical	А	0	A	-	
P1121	Throttle Sensor Signal invalid	В	0	В	0	
P0710	ATF Temp. Sensor Circuit Malfunction	В	0	В	-	
P1115	Water Temp. Signal Malfunction from ECU to TCU	В	0	В	-	
P0717	Input Speed Sensor Circuit No Signal	В	0	В	0	
P0716	Input Speed Sensor Circuit Range / Performance	В	0	В	-	
P1795	Transfer High/Low(L4) Switch Malfunction	В	0	-	-	
P1630	CAN communication BUS OFF	В	0	В	0	
P1631	No ID from ECU	В	0	В	0	
-	Vehicle Speed Signal From Meter Set	С	-	-	-	
-	Brake SW malfunction	С	-	C	-	

* Fault type - Type A: DTC stored on the 1st driving, Type B: DTC stored on the 2nd driving, Type C: only failsafe (Not DTC stored) * Warning lamp: O/D OFF lamp

Troubleshooting

0.5 sec.

P0753Solenoid No.1 (S1) Open, Ground shortP0758Solenoid No.2 (S2) Open, Ground shortP0743L-up solenoid (SL) Open, Ground short			
	DTC detected condition	Cause of failure	
	splayed in case any trouble is detected at any es after a trouble is detected at one gear for	1. Harness or connector between each shift solenoid and TCM	
Open:		2. Each shift solenoid	
	splayed in case any trouble is detected at any es after a trouble is detected at one gear for	3. TCM	

P0748	Pressure control solenoid Open, Ground short				
DTC detected condition Cause of failure					
Open/short to GND 20 mA or less curren more, DTC is memo	It has been detected for 12.5 seconds or	1. Harness or connector between PCSV and TCM.			
Short to B+: 1.36 A or more output current is detected for 0.5 seconds or more, DTC is memorized.		2. PCSV 3. TCM			

P0716, P0717	Input speed sensor No signal
P0722	Output speed sensor No signal

DTC detected condition	Cause of failure
No C0 signal:	
No pulse from C0 is detected while 12 pulses of SP signal	
detected, failure is 1 time. More than 1000 times	
continuously detected, it is judged a temporary failure. When	1. Harness or
it is detected again after IG OFF to ON, total failure become 2	connector between each speed sensor
times. DTC is displayed.	and TCM.
No SP signal :	
No pulses from SP is detected while 45 pulses of C0 signal	2. Each speed sensor
detected, failure is 1 time. More than 500 times continuously	3. TCM
detected, a temporary failure is memorized. When it is	
detected again after IG OFF to ON, total failure become 2	
times. DTC is displayed.	

P0707	TR switch No signal, Open			
D	DTC detected condition			
transmitted more the trouble is detected a	porary failure in case no signal is an 30 seconds . at 1130 rpm . When any again after IG OFF to ON, the number of d DTC decides a failure.	 Harness or connector between TR switch and TCM. 		
signals for more that	porary failure in case detected 2 or more in 10 sec . When any trouble is detected to ON, the number of problems total 2 and re.	2. TR switch 3. TCM		

P0710 ATF temp. sensor open or short to Ground					
D	TC detected condition	Cause of failure			
Open: When detected detected of oil temperature after temporary failure is d OFF => ON, the total decided.	1. Harness or connector between ATF temp. sensor and TCM.				
for 5 minutes since I When it is detected a	tion condition that the abnormal condition G ON, a temporary failure is decided. gain after IG is OFF => ON, the total of nes and DTC is decided.	2. ATF temp. sensor 3. TCM			

TCM input and output terminal voltage table

No	PIN NAME	CONDITION	INPUT&OUTPUT SIGNAL		DEMADIZ
			TYPE	Level	REMARK
	SCSV 1	DRIVING		Vbatt - 0V	SCSV1:
13	(1st, 2nd speed operation)	(P,N/1st/2nd 3rd/4th speed)	Frequency	lo : 1.9A MAX	Shift Control Solenoid Valve no.1
	SCSV 2	DRIVING		Vbatt - 0V	SCSV2:
14	(2nd,3rd speed operation)	(P,N/1st/2nd 3rd/4th speed)	Frequency	lo : 1.9A MAX	Shift Control Solenoid Valve no.2
9	SNOW SW	SW OFF	Frequency	V _{GND} -0.3 - 2V	
9	(2WD VEHICLE)	SW ON	DC	V(IG.1)	
7	C0 CYLINDER REV. SNSR (Over drive clutch drum)		Pusle	V _{Hi} - V _{Low}	
1				16 Pulse/Co cylinder rev.	<- Input speed sensor
8	VEHICLE SPEED SENSOR	DRIVING	Pulse	V _{Hi} - V _{Low}	<- Output speed
0				12Pulse/TM rev.	
31		OFF SW OFF	DC	V(IG.1)	
31	O/D OFF SW	OFF SW ON	DC	V _{GND} -0.3 - 2V	
48		Р	DC	Vbatt	
40	INHIBITOR SW(P)	R/N/D/2/L	DC	BELOW 0.8V	
12	INHIBITOR SW(R)	R	DC	Vbatt	
12		P/N/D/2/L	DC	BELOW 0.8V	
34	BATT	IGN OFF	DC	Vbatt	
04	BATT	IGN ON	DC	Vbatt	
2	LOCK-UP SOLENOID	DRIVING	_	Vbatt - 0V	<- Torque conveter
		(over 45km/h)	Frequency	Lo : 1.9A MAX	solenoid valve
3	PCSV	IDLE		Current control	Pressure control
U	1000			Lo : 1A MAX	solenoid valve

TCM input and output terminal voltage table

No	PIN NAME	CONDITION INPUT&OUTPUT SIGNAL		REMARK	
		CONDITION	TYPE	Level	
5	EARTH FOR PCSV				
47	DTC CLEAR SW	S/W OFF	DC	V(IG.1)	
		S/W ON	DC	V _{GND} -0.3 - 1.0V	
40		IGN OFF	DC	0V	
18	OIL TEMP SNSR	IDLE	DC	0 - 5V	
24	EARTH FOR C0 CYLINDER REV. SNSR				
26	EARTH FOR VSS				
	L4 SW	SW OFF	DC	V(IG.1)	
42	(4WD VEHICLE)	SW ON	DC	V _{GND} -0.3 - 1.0V	
40	SNOW LAMP	LAMP OFF	DC	Vbatt	
10	(2WD VEHICLE)	LAMP ON	DC	1.5V MAX	
29	O/D OFF LAMP	LAMP OFF	DC	Vbatt	
29		LAMP ON	DC	1.5V MAX	
32	INHIBITOR SW(N)	N	DC	Vbatt	
52		P/R/D/2/L	DC	BELOW 0.8V	
33	INHIBITOR SW(D)	D	DC	Vbatt	
00		P/R/N/2/L	DC	BELOW 0.8V	
1	POWER(IGN 1)	IGN OFF	DC	0V	
I		IGN ON	DC	9V - 16V	
6	EARTH FOR POWER				
46	BRAKE SW	SW OFF	DC	V _{GND} -0.3 - 2V	
		SW ON	DC	Vbatt-2.0 - Vbatt	
35	EARTH FOR POWER				
17	EARTH FOR OTS				OTS:Oil Temp. Sensor

TCM input and output terminal voltage table

No	PIN NAME	CONDITION	INPUT&OUTPUT SIGNAL		REMARK
	INO		CONDITION	TYPE	Level
45	K-LINE	Continuity (10.4Kbps)	Pulse	Logic "0" : Vbatt 20% ↓ Logic "1" : Vbatt 80% ↑	
	DIAG. SW	S/W OFF	DC	V(IG.1)	
28		S/W ON	DC	V _{GND} -0.3 - 1.0V	
40	INHIBITOR SW(2)	2	DC	Vbatt	
49		P/R/N/D/L	DC	Below 0.8V	
50	INHIBITOR SW(L)	L	DC	Vbatt	
50	INTIBITOR SW(L)	P/R/N/D/2	DC	Below 0.8V	
~~~	CRUISE CONTROL	ACC OFF		V(IG.1)	
23	(Σ3.5/S-II 2.4)	ACC ON		V _{GND} -0.3 - 1.5V	
41	CAN(HIGH)	Continuity (500kbit/s)			
22	CAN(LOW)	Continuity (500kbit/s)			





 $\begin{bmatrix} 34 & 13 & 1 \\ 35 & 14 & 1 \\ 36 & 15 & 2 \\ 17 & 3 & 16 & 2 \\ 18 & 4 & 38 & 19 \\ 38 & 19 & 5 & 4 \\ 38 & 19 & 5 & 4 \\ 38 & 19 & 5 & 4 \\ 48 & 27 & 9 & 4 \\ 44 & 25 & 8 & 9 \\ 44 & 25 & 8 & 9 \\ 44 & 25 & 9 & 9 \\ 44 & 25 & 9 & 9 \\ 44 & 25 & 9 & 9 \\ 44 & 25 & 9 & 9 \\ 44 & 25 & 9 & 9 \\ 44 & 25 & 9 & 9 \\ 44 & 25 & 9 & 9 \\ 44 & 25 & 9 & 9 \\ 44 & 37 & 11 & 4 \\ 45 & 37 & 11 & 4 \\ 45 & 37 & 11 & 4 \\ 45 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 46 & 37 & 11 & 4 \\ 47 & 30 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\ 48 & 37 & 11 & 4 \\$ 

# **SHIFT PATTERN**

#### BL A-2.5 SHIFT PATTERN (Normal D range:FGR 4.181)



# **SHIFT PATTERN**

#### **BL** $\Sigma$ 3.5 SHIFT PATTERN (Normal D range: FGR 4.666)

